Prediction of a highly activated state of CO adsorbed on an Al/Fe(100) bimetallic surface.

نویسندگان

  • D E Jiang
  • Emily A Carter
چکیده

Using periodic slab density functional theory, we investigate CO adsorption, diffusion, and dissociation energetics on a monolayer of Al covering Fe(100) [Al/Fe(100)]. We predict a weakly chemisorbed state of CO to exist on Al/Fe(100), with CO adsorbing on the 4-fold hollow site in a very tilted fashion. This state is predicted to have an extremely low CO stretching frequency of only 883 cm(-1), indicating a dramatically weakened CO bond relative to gaseous CO, even though the molecule is predicted to bind to Al/Fe(100) quite weakly. We predict that dissociation of CO starting from this weakly adsorbed state has a barrier of only approximately 0.35 eV, which is approximately 0.70 eV lower than that on Fe(100). To understand how the underlying substrate changes the electronic properties of the supported Al monolayer, we compare CO adsorption on Al/Fe(100) to its adsorption on analogous pure Al(100) surfaces. This highly activated yet weakly bound state of CO on Al/Fe(100) suggests that Al/Fe(100) could be an effective low-temperature bimetallic catalyst in reducing environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD

Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850°C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNT...

متن کامل

The Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study

In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...

متن کامل

CO Adsorption on the V (100) Surface: A Density Functional Study

Adsorption of CO molecule on the Vanadium surface has been studied by using of the DFT method with LANL2DZ,6-31G* and 6-31G** basis sets by GGA approximation of theory. Using periodic first principles simulations we investigate the interaction of oxygen molecule with regular V (100) surface. The limitation of this approach is the use of thin metallic slabs with a limited range for their coverag...

متن کامل

A Neuro-Fuzzy Algorithm for Modeling of Fischer-Tropsch Synthesis over a Bimetallic Co/Ni/Al2O3 Catalyst

An alumina supported Co/Ni catalyst was prepared by sol-gel procedure to study the catalytic behavior during Fischer-Tropsch synthesis in a fixed-bed reactor. The effect of CO conversion (10-50%) on hydrocarbon product distribution (CH4, C5+ and C2-C4 olefin selectivities) was studied. Selectivity for CH4 decreased, while those of C5+<...

متن کامل

Ab initio (first principle) material modeling study on Lio adsorbed by palladium-cobalt (PdCo) nanoparticles

PdCo subnanoalloys have been commonly used as a catalytic material in some important chemicalreactions, involving in fisher-tropsch reactions, and oxygen reduction reactions. In terms ofunderstanding the role of catalysis, these smallest bimetallic nanoparticles provide the simplestprototypes of Pd-Co bimetallic catalysts for different compositions. In this study, the effect o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 44  شماره 

صفحات  -

تاریخ انتشار 2006